, , , , , , ,

It is my very first interaction with Linux kernel at device driver level. My objective is to develop a block device driver, very simple, that just forward I/O requests to a virtual device. This post explains my observations limited to attacking the problem.

Block v/s Character Device

Linux support block and character device drivers. Only block devices can host and support a filesystem. Block devices support random read/write operations. Each block is composed of sectors, usually 512 bytes long and uniquely addressable. Block is a logical entity. Filesystems usually use 4096 bytes blocks (8*512) or 8 sectors. In Linux kernel, a block device is represented as a logical entity (actually just a C structure). So, we can export anything as a device as long as we can facilitate read/writes operations on sector level.

Device driver is the layer that glues Linux kernel and the device. Kernel receives device targeted I/O requests from an application. All I/O requests pass through buffer cache and I/O scheduler. The latter arranges I/O requests optimally to improve seek time, assuming requests would run on a disk. In fact, Linux kernel has various I/O schedulers and hence multiple type of I/O request order could exist.

A device driver always implement a request queue. The Linux I/O scheduler enqueues requests in driver’s queue. How to serve these requests? That is device driver’s headache. The request queue is represented by the request_queue structure and is defined in “blkdev.h". Driver dequeues requests from this queue and send them to device. It then acknowledgement to each requests with error status.

If a device do not need optimal I/O order, it may opt for direct handing of I/O requests. An excellent example of such driver is loopback driver (loop.c, loop,h). It handles struct bio that stands for block I/O. A bio structure is a scatter gather list of page aligned buffer (usually 4K). Handling of bio structure is almost same as a struct req.

What are requirements for my driver


  • Runs on flash storage drives
  • Perform plain I/O forwarding
  • Minimal overhead, minimal code size

In my next post, I will discuss design of my driver.